You are not currently logged in. Please create an account or log in to view the full course.
3. Methods of Naming Enantiomers
- Description
- Cite
About this Lecture
Lecture
In the third mini-lecture, we look deeper into how we distinguish and name enantiomers. What tools do we have at our disposal? We look specifically at two different naming systems: Fischer, and Cahn-Ingold-Prelog. We learn the step-by-step method of naming enantiomers by each of these methods, and apply it to various examples of haloalkanes, drugs (such as thalidomide and ibuprofen), amino acids, and monosaccharides.
Course
In this course, Professor David Bergbreiter (Texas A&M) introduces us to the concept of optical isomerism, the idea that certain molecules have mirror images of themselves which are non-superimposable, giving rise to a completely new set of properties. We begin by: (i) first looking at the concept of isomers, where optical isomers can be found and an initial concept of non-superimposability, then; (ii) talking about where optical isomers (or enantiomers) can be found in medicine and introducing optical activity; (iii) and then moving on to develop the idea of optical activity, and how we use that to name and identify different enantiomers, using various different examples; (iv) then briefly touching on other nomenclature and representations; (v) and finally using this new nomenclature we have learned on a more advanced level with real molecule.
Lecturer
Professor David Bergbreiter obtained his B.S from Michigan State and his PhD from MIT. He has worked as an academic in various places but he currently works at Texas A&M, receiving awards for his research and teaching at the university, including the South Eastern Conference Faculty Achievement Award (2017), the Regents' Professor Award (2016 – present), among many others. David Bergbreiter and his group explore new chemistry related to catalysis and polymer functionalization using the tools and precepts of synthetic organic chemistry to prepare functional oligomers or polymers that in turn are used to either affect catalysis in a greener, more environmentally benign way or to efficiently functionalize polymers. Often this involves developing new separation chemistry that creatively uses polymers but retains the reactivity of a low molecular weight catalyst, ligand, or reagent. These green chemistry projects involve fundamental research both in synthesis and catalysis but still have relevance to practical problems.
Cite this Lecture
APA style
Bergbreiter, D. (2022, January 18). Optical Isomerism - Methods of Naming Enantiomers [Video]. MASSOLIT. https://massolit.io/courses/optical-isomerism/methods-of-naming-enantiomers
MLA style
Bergbreiter, D. "Optical Isomerism – Methods of Naming Enantiomers." MASSOLIT, uploaded by MASSOLIT, 18 Jan 2022, https://massolit.io/courses/optical-isomerism/methods-of-naming-enantiomers