You are not currently logged in. Please create an account or log in to view the full course.
8. Waves in Modern Physics
- Description
- Cite
About this Lecture
Lecture
In this final mini-lecture, we explore waves in the context of modern physics, focusing in particular on: (i) Einstein’s photoelectric effect, from which he concluded that light comes in discrete energy packets known as photons; (ii) the wave-like properties of photons, in particular that they have a wavelength, frequency, and phase, and replicate the interference pattern of a wave when individually passed through two slits; (iii) the analogous understanding of seeing particles as waves; (iv) the wave-like properties of electrons, including electron diffraction and interference; and (v) essential developments of quantum mechanics in the 1920s.
Course
In this course, Professor Steven Balbus (University of Oxford) explores waves. In the first mini-lecture, we introduce Hooke’s Law and solve for a mathematical solution that reveals the concept of Simple Harmonic Motion. In the second mini-lecture, we use a model of many masses on springs to understand properties of waves, including transverse and longitudinal waves, amplitude, wave number, wavelength, waves described in space and time, and wave velocity. The third mini-lecture discusses sound waves and water waves, including examples of sound waves in various mediums with various frequencies and tsunami waves. In the fourth mini-lecture, we give an overview of light waves and electromagnetic radiation. The fifth mini-lecture introduces constructive and destructive wave interference, as well as two-source interference. In the sixth mini-lecture, we turn towards diffraction, detailing Huygens' Construction used to determine the angles at which nulls in a wave appear in order to discuss a few examples with familiar objects. In the seventh mini-lecture, we introduce dispersive waves and go through two examples: surface water waves in deep water and waves such as FM radio waves passing through the Earth’s ionosphere. In the eighth mini-lecture, we briefly explore waves in modern physics, discussing Einstein’s photoelectric effect and the wave-like properties of particles, including photons (light particles).
Lecturer
Steven Balbus is the Savilian Professor of Astronomy at the University of Oxford and a Professorial Fellow at New College, Oxford. Before coming to Oxford, he was a Professeur des Universités in the Physics Department of the Ecole Normale Supérieure de Paris for nine years. He has also held academic positions at Princeton University, MIT, and the University of Virginia. Professor Balbus’ research interests lie in astrophysical fluid dynamics, particularly the behavior of magnetic gases. He has made distinguished contributions to our understanding of accretion disks, the dynamics of heating and cooling processes in hot plasmas, the behavior of gas in spiral galaxies, and the Sun’s internal rotation. In 2013, he was jointly awarded one of the highest honours in astronomy, the Shaw Prize, for his work on accretion disk turbulence, referred to as the magnetorotational instability. He received the Eddington Medal from the Royal Astronomical Society in 2020 and the Dirac Medal and Prize from the Institute of Physics (IoP) in 2021. Professor Balbus is a Fellow of the Royal Society and a member of the US National Academy of Sciences.
Cite this Lecture
APA style
Balbus, S. (2022, January 12). Waves - Waves in Modern Physics [Video]. MASSOLIT. https://massolit.io/courses/waves/waves-in-modern-physics
MLA style
Balbus, S. "Waves – Waves in Modern Physics." MASSOLIT, uploaded by MASSOLIT, 12 Jan 2022, https://massolit.io/courses/waves/waves-in-modern-physics